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1. INTRODUCTION

Recent studies have been increasingly using naturalistic 
paradigms— experimental tasks designed to emulate the 
experience of everyday life— to capture the underlying 

neural signature of complex cognition ( Hasson  et  al., 

 2008;  Sonkusare  et  al.,  2019;  Spiers  &  Maguire,  2007; 

 Vanderwal  et al.,  2019). One such naturalistic paradigm is 

movie- watching and listening ( Bartels  &  Zeki,  2004; 
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 Hasson  et  al.,  2004). Movies are unique experimental 
stimuli because they enable the exploration of a variety  
of higher- order cognitive processes, such as language 
comprehension, attention, memory, plot following, and 
feelings of suspense ( Chen  et  al.,  2017;  Hasson  et  al., 
 2008;  Naci  et al.,  2014;  Nguyen  et al.,  2019). Moreover, 
these higher- order cognitive processes produce reliable 
neural correlates when measured with functional mag-
netic resonance imaging ( Gao  et al.,  2020;  Hasson  et al., 
 2010;  Hlinka  et  al.,  2022;  Naci  et  al.,  2014;  Vanderwal 
 et  al.,  2019;  J.  Wang  et  al.,  2017; fMRI). These factors 
have prompted the widespread use of movies in psycho-
logical, neuroscientific, and clinical research ( Alexander 
 et  al.,  2017;  Eickhoff  et  al.,  2020;  Hasson  et  al.,  2008; 
 Nastase  et al.,  2021).

Movie narratives are particularly appropriate in popu-
lations where it is challenging or otherwise impossible to 
detect higher- order cognitive functioning behaviorally 
( Alexander  et al.,  2017;  Naci  et al.,  2017). This includes 
developmental and pediatric populations which use the 
neural correlates of movie narratives to measure cogni-
tive capacities in children and estimate their association 
with mental health, developmental, and learning disor-
ders ( Alexander  et al.,  2017;  Lyons  et al.,  2020; Richard-
son et  al., 2018;  Vanderwal  et  al.,  2019) as well as 
neurodegenerative and critically brain- injured patients 
where movie narratives are used to assess for evidence 
of higher- order cognitive capacities ( Huntley  et al.,  2023; 
 Laforge  et  al.,  2020;  Naci  et  al.,  2014). In all cases, 
observing neural activity in response to movie narratives 
provides a basis for attributing higher- order cognitive 
capacities to these groups. Thus, these attributions 
enable a better understanding of these populations as 
well as the potential to inform clinical decision making. 
Given these possibilities, it is essential that the neural 
correlates that are the basis of these judgments are 
robust and reproducible at a single- participant level.

Currently, the gold standard imaging modality for 
inter- participant reproducibility is fMRI. For example, in 
 Naci  et  al.  (2014), synchronization in neural activity in 
the frontoparietal network was observed in all 12 con-
trols when they watched an edited version of the Alfred 
Hitchcock TV episode Bang! You’re Dead. The protocol 
was extended to two critically brain- injured patients. 
Due to their injuries, these patients’ behavioral responses 
to commands were unreliable or absent, making it 
unclear whether they had any residual cognitive capac-
ities. Remarkably, the researchers found that one 
patient’s frontoparietal activity was significantly syn-
chronized with that of controls, suggesting that the 
patient was experiencing the movie similarly to the 
healthy participants. Despite the successful applica-
tions of fMRI, it has drawbacks in that it is relatively 

expensive, challenging to administer, and may be 
unsuitable for many naturalistic paradigms.

Functional near- infrared spectroscopy (fNIRS) appears 
to be a suitable alternative for scenarios in which fMRI is 
not viable or ideal ( Ayaz  et  al.,  2022;  Scholkmann  et  al., 
 2014). Owing to its main features, such as affordability, por-
tability, and versatility, fNIRS holds great potential to be 
applied to pediatric and neonatal ( Peng  &  Hou,  2021;  Tang 
 et al.,  2024), neurodegenerative ( Blum  et al.,  2022;  Keles 
 et al.,  2022;  Kuruvilla  et al.,  2013), and critically brain- injured 
( Abdalmalak  et al.,  2020;  Bicciato  et al.,  2022;  Shu  et al., 
 2023;  L.  Wang  et al.,  2022) populations. Given these advan-
tages, fNIRS has also been increasingly used to measure 
neural activity in naturalistic contexts (see  Pinti  et al.,  2018; 
 Quaresima  &  Ferrari,  2019 for a review), ranging from social 
interaction ( Hakuno  et al.,  2018;  Hirsch  et al.,  2018), real- 
world memory studies ( Burgess  et  al.,  2022;  Pinti  et  al., 
 2015), as well as narrative stimuli ( Fishell  et  al.,  2019; 
 Mizrahi  &  Axelrod,  2023;  Rowland  et  al.,  2018;  Somech 
 et al.,  2022). By shining and detecting near- infrared light on 
the surface of the scalp, fNIRS estimates oxy- (HbO) and 
deoxy- hemoglobin (HbR) from the cortex, relying on neuro-
vascular coupling to infer brain activity ( Boas  et al.,  2014; 
 Ferrari  &  Quaresima,  2012; Huppert, 2006;  Jöbsis,  1977; 
 Scholkmann  et al.,  2014;  Steinbrink  et al.,  2006). Despite 
this increased interest in the use of fNIRS in clinical settings 
(Abdalmalak et al., 2017, 2021;  Amyot  et al.,  2019;  Kazazian 
 et  al.,  2021;  Kempny  et  al.,  2016;  Quiroga  et  al.,  2022; 
 Rupawala  et al.,  2018) and with naturalistic stimuli ( Mizrahi 
 &  Axelrod,  2023;  Pinti  et  al.,  2018;  Quaresima  &  Ferrari, 
 2019;  Somech  et al.,  2022), the reproducibility and sensitiv-
ity of fNIRS to detect neural activation at the individual level 
is understudied ( Novi,  Forero,  et al.,  2020).

In this work, healthy participants watched a clip from 
the TV episode Bang! You’re Dead and listened to a clip 
from the movie Taken while monitored with fNIRS. In addi-
tion to these movie clips, participants watched or listened 
to scrambled versions of those clips. We hypothesized 
that both intact clips would lead to higher levels of syn-
chronization compared to their scrambled counterparts, 
particularly in frontal and parietal regions known to be 
involved in higher- order cognitive processing of movie nar-
ratives ( Laforge  et al.,  2020;  Naci  et al.,  2014). Moreover, 
we predicted that frontal and parietal activity would be 
predicted by a measure of qualitative experience— the 
feelings of suspense felt during the clip— further establish-
ing the relation between these regions and higher- order 
cognitive processing. Next, we measured the single- 
participant reproducibility of fNIRS by computing two sep-
arate measures: consistency and sensitivity. Consistency 
was measured as the similarity of a given participant to the 
group results that exclude that participant, whereas  
sensitivity was measured by whether machine- learning 
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algorithms could decode between intact and scrambled 
narrative stimuli for each participant. Our results indicate 
that fNIRS can be used to extract consistent and sensitive 
synchronization patterns at the individual level, implicating 
fNIRS as a promising tool to reliably measure the neural 
correlates of movie narratives.

2. METHODS

2.1. Participants

Thirty participants (Mean age = 23.3, SD = 3.1, Range = 
19- 31; 17 females) from Western University participated 
in this study. All participants were compensated for their 
time ($20/hour). Four participants were excluded from 
the analysis (one due to data acquisition issues and three 
rejected for having no good quality short channels), 
resulting in 26 participants being included in the subse-
quent analyses. All participants provided written informed 
consent before beginning the study. The study was 
approved by the Research Ethics Board at Western Uni-
versity in compliance with the Tri- Council Policy State-
ment (TCPS): Ethical Conduct for Research Involving 
Humans guidelines.

2.2. Stimuli

Participants were presented with four narrative stimuli 
(two Intact and two Scrambled). One Intact audiovisual 
TV clip (Bang! You’re Dead!; hereby referred to as BYD) 
and its Scrambled counterpart (hereby referred to as BYD 
Scrambled) and one Intact audio movie clip (Taken) and 
its Scrambled counterpart (Taken Scrambled). The BYD 
stimulus is an edited and shortened black- and- white TV 
episode from “Alfred Hitchcock Presents —  Bang! You’re 
Dead” (see  Laforge  et  al.,  2020;  Naci  et  al.,  2014 for 
details). In short, BYD depicts a scenario involving a boy 
who finds his uncle’s gun, believing it to be a toy. The 
story’s suspense builds as he proceeds to load and point 
the gun at several individuals, eventually culminating with 
him discharging the weapon. BYD Scrambled is identical 
to BYD, but one- second increments of the movie were 
pseudo- randomly re- ordered, producing a coherent 
visual scene— one that is effectively identical to the uned-
ited version— but without narrative structure. The Taken 
stimulus has also been described in detail elsewhere 
( Laforge  et  al.,  2020;  Naci  et  al.,  2017). It is an audio 
excerpt from the movie “Taken”. Taken depicts an initially 
tense phone call between a father and daughter that 
begins with the father upset that his daughter is attending 
a trip abroad without following his rules. The tension 
escalates when kidnappers break into her hotel and cap-
ture her. The phone call ends with the father vowing to 

find the kidnappers. Taken Scrambled is effectively iden-
tical to Taken but with its spectral properties rotated, 
which distorts the higher- order audio features (e.g., 
speech) but maintains the temporal structure of the 
sound and lower- level audio features. BYD, BYD Scram-
bled, Taken, and Taken Scrambled lasted 478, 463, 312, 
and 302 seconds, respectively.

2.3. Procedure

Participants were presented with four stimuli: two audio-
visual and two audio- only. For the audiovisual stimuli, 
participants were instructed to view and listen to the 
stimuli as they would typically do while watching a movie. 
For the audio- only stimuli, participants were instructed to 
look at a fixation cross presented in the middle of a com-
puter screen while listening to the stimuli. Each stimulus 
was separated by 30 seconds of rest, during which par-
ticipants were asked to maintain fixation and remain still 
with no audiovisual information. Intact stimuli always fol-
lowed their Scrambled counterpart to avoid the possibil-
ity of prior knowledge of the plot from carrying over to 
their Scrambled versions. Moreover, the order of present-
ing the audiovisual or audio- only stimuli was counterbal-
anced across participants to account for covariates such 
as cognitive fatigue or decreases in fNIRS signal quality 
across the experiment. Each participant was given a self- 
paced break between the audiovisual and audio- only 
stimuli, if needed. See Figure 1A for an overview of the 
experimental procedure.

2.4. Data acquisition

FNIRS data were acquired with a continuous- wave  
system (NIRScoutXP, NIRx Medical Systems; Berlin,  
Germany) at 3.9063 Hz with 32 sources and 39 detectors, 
allowing 121 regular (i.e., source- detector distance 
around 3 cm) and 8 short channels (i.e., source- detector 
distance of 0.8 cm). Data from 16 participants were col-
lected with four wavelengths (lasers centred at 785, 808, 
830, and 850  nm) and 14 with two wavelengths (LEDs 
centred at 760 and 850 nm). The probe covered most of 
the head, including the frontal, temporal, parietal, and a 
small part of the occipital lobe (see Fig. 1B). The sources 
and detectors were placed onto the participant’s head 
with a standard 10- 20 cap from EasyCap (Brain Vision).

2.5. fNIRS data analysis

2.5.1. Preprocessing

All preprocessing was conducted using custom scripts  
in MATLAB (Mathworks Inc; Version 2020b) based on 
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HOMER 2 functions ( Huppert  et al.,  2009). Light intensity 
was converted to optical density and then corrected for 
motion artifacts with a hybrid algorithm that employs 
spline interpolation followed by wavelet decomposition 
( Di  Lorenzo  et al.,  2019;  Novi,  Roberts,  et al.,  2020; see 
the Supplementary Materials for information about the 
proportion of motion artifacts in the data). The cleaned 
optical density data were converted into oxy- (HbO) and 
deoxy-  hemoglobin (HbR) via the modified Beer- Lambert 
law ( Delpy  et al.,  1988):

ΔHbO
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⎡
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Fig. 1. (A) Diagram showing the procedure of the experiment, which includes two audiovisual stimuli (from the TV episode 
“Alfred Hitchcock Presents —  Bang! You’re Dead” (1961) and two audio- only clips (from the movie “Taken” (2008)). One of 
the audiovisual and audio- only stimuli were unadjusted (which we referred to as Intact), and the remaining two stimuli were 
manipulated to prevent following the narrative’s plot (which we referred to as Scrambled). The audiovisual Scrambled clip 
had each one- second increments of the movie pseudo- randomly re- ordered, producing a coherent visual scene that lacked a 
narrative structure. The audio- only scrambled clip was the result of a spectral rotation which rendered speech indecipherable 
but maintained the basic auditory properties of the stimuli. Note whether the audio- only clips or the audiovisual clips were 
shown first were counterbalanced, whereas Scrambled clips always preceded their Intact counterpart. (B) Four model brain 
images show the placement of sources (red dots) and detectors (blue dots) for horizontal, lateral, frontal, and posterior views 
(generated with NIRSite version 2023.9). (C) FNIRS data preprocessing pipeline.
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ΔOD indicates the observed change in optical density at a 
given wavelength λ across some time t. DPF  is the differ-
ential pathlength factor, which accounts for the increased 
length light may travel based on the scattering properties  
of tissue at a given wavelength λ, and ρ is the Euclidean 
distance between a source and detector that define a 
channel. The DPF was computed for each wavelength and 
participant ([DPF760: Mean = 6.060, SD = 0.095; DPF785:
Mean = 6.045, SD = 0.073; DPF808:Mean = 5.849, SD = 0.073; 
DPF830:Mean = 5.521, SD = 0.073; DPF850 :Mean = 5.037,
SD = 0.091]) using a method which accounts for small 
variations due to the age of each participant ( Scholkmann 
 &  Wolf,  2013). HbO and HbR signals were band- pass 
filtered between 0.005 and 0.20 Hz with a Butterworth 
filter. Next, scalp hemodynamics were regressed using 
short channel regression (Brigadoi & Cooper, 2015; 
 Saager  &  Berger.,  2005). Specifically, HbO and HbR 
measurements from good- quality short channels were 
regressed from each long channel. A short channel was 
defined as being of high quality if there was a visible 
power spectrum peak at ~1 Hz in the raw light intensity 
data in each wavelength. Principal Component Analysis 
(PCA) was applied to all clean HbO and HbR short chan-
nels (using the Singular Value Decomposition algorithm) 
prior to regression to avoid convergence problems due 
to collinearity between short channels ( Abdalmalak 
 et al.,  2022;  Santosa  et al.,  2020;  Wyser  et al.,  2022). All 
principal components were included as regressors. 
Last, each cleaned hemoglobin time series was stan-
dardized by subtracting its mean and dividing by its 
standard deviation. The preprocessing pipeline is 
depicted in Figure 1C.

2.5.2. Inter- subject correlation

Inter- subject correlation (ISC) analysis was used to 
determine neural synchronization across participants 
during movie watching and listening ( Hasson  et  al., 
 2004;  Nastase  et  al.,  2019). Specifically, ISCs were 
computed by calculating the Pearson correlation coeffi-
cient between the hemoglobin time series of a given 
participant and the averaged time series across all 
remaining participants for each channel, stimulus, and 
hemoglobin independently. Next, we applied the Fisher 
transformation and averaged the correlation values of 
HbO and HbR for each channel, resulting in 121 ISCs 
(one per regular channel) per left out participant per 
stimulus condition (the procedure was repeated so that 
every participant was “left out” one time). Note that the 
HbO and HbR ISCs were averaged to produce a robust 
measure of ISC, as increases in HbO are expected to 
produce decreases in HbR, resulting in ISCs that are 
expected to be similar.

2.5.3. Group analysis

Group- level statistical analyses were performed on ISCs 
from each condition (BYD, BYD Scrambled, Taken, Taken 
Scrambled) and for two between- condition comparisons 
(BYD > BYD Scrambled and Taken > Taken Scrambled). 
No comparisons were made between the audiovisual and 
audio- only stimuli, with the exception of ((BYD  >  BYD 
Scrambled) vs. (Taken > Taken Scrambled)), which can be 
found in the Exploring Neural Differences in Higher- Order 
Cognitive Processes Between BYD and Taken section in 
the Supplementary Materials. Statistical significance was 
determined using a permutation testing approach. Spe-
cifically, 1000 phase- scrambled versions of the original 
data (i.e., surrogates) were generated to derive null 
hypotheses for statistical testing. To construct the phase- 
scrambled surrogates, the Fourier transform was applied 
for each hemoglobin time series for each channel. The 
phase was then rotated by adding a random value 
between 0 and 2π, while the amplitude of the signal was 
held constant. The phase randomization was the same 
for both HbO and HbR to preserve the expected negative 
correlation between HbO and HbR. Importantly, these 
phase- scrambled surrogates maintain the structure and, 
critically in the case of fNIRS, the autocorrelation of the 
original signal, enabling accurate comparison with the 
original signal (see  Prichard  &  Theiler,  1994;  Regev  et al., 
 2013 for additional details).

The phase- scrambled surrogates were used to com-
pute the distributions of ISCs values obtainable by 
chance. FDR correction was applied to these distribu-
tions using the max t method ( Nichols  &  Holmes,  2002). 
For each condition, a one- tailed group- level t- test was 
conducted on ISCs derived from the phase- scrambled 
surrogates. The maximum t- scores obtained across 
channels were recorded for each surrogate, which gener-
ated the null hypothesis for their respective condition. 
The identical procedure was used for the two between- 
condition comparisons; only the ISCs from the Scram-
bled conditions were subtracted from the Intact conditions 
prior to running the one- tailed t- test. This procedure was 
completely effective at controlling for spurious correla-
tions in the data, as verified on an independent resting 
state dataset ( Abdalmalak  et al.,  2022; see Validation of 
Inter- subject Correlation Analysis Using Resting State 
Data in the Supplementary Materials).

2.5.4. Suspense analysis

To substantiate that the neural differences between 
Intact and Scrambled conditions reflected higher- order 
processing of the movie’s narrative, suspense ratings 
were used to predict the group averaged HbO and HbR 
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time series. These suspense ratings, reflecting a scale 
from 1 (minimal suspense) to 10 (peak suspense), were 
obtained at approximately two- second intervals from an 
independent cohort of 20 participants ( Laforge  et  al., 
 2020;  Naci  et al.,  2014) while they watched BYD or lis-
tened to Taken. Consistent with previous fMRI work 
( Naci  et  al.,  2014), group- averaged suspense ratings 
were used as a regressor within a general linear model 
(GLM) to predict group- averaged HbO and HbR time 
series for both the BYD and Taken condition. Unlike pre-
vious studies, the respective Scrambled hemoglobin 
time series was added to the GLM model as a nuisance 
regressor. The additional nuisance regressor aimed to 
remove spurious correlations due to temporally dynamic 
patterns of the hemoglobin time series that may be cor-
related with the suspense ratings only by chance (e.g., 
changes in audio volume, auditory envelope). HbO and 
HbR time series were downsampled to match the same 
frequency of the suspense ratings. The p- values of the 
betas were FDR corrected via the Benjamini- Hochberg 
method, where q < 0.05 denoted significance ( Benjamini 
 &  Hochberg,  1995).

2.5.5. Inter- participant reproducibility

2.5.5.1. Leave- one- out (LOO) datasets. To accurately 
estimate inter- participant reproducibility within a dataset, 
each individual participant’s data had to be compared 
with data that was independent of their own. To this end, 
a selected participant’s data were omitted from the data-
set, and ISCs were recalculated on the remaining partici-
pants (identically as described in the section 2.5.2). This 
procedure was repeated for each participant, generating 
26 unique datasets in total. For instance, in the first leave- 
one- out (LOO) dataset, ISCs were computed using data 
from participants 2 through 26. This dataset would then 
be used to estimate the reproducibility of participant 1’s 
ISCs. In essence, each left- out participant is treated like 
a newly acquired “patient”, where their actual ISCs are 
compared to a “healthy control” dataset.

2.5.5.2. Masking. To derive the mask of channels used 
to measure inter- participant reproducibility, the group 
analyses were recomputed on each LOO dataset. Specif-
ically, this was done for each experimental condition 
(BYD, BYD Scrambled, Taken, Taken Scrambled) as well 
as for the two between condition comparisons (BYD  > 
BYD Scrambled, and Taken  >  Taken Scrambled). This 
approach yielded 26 different masks per comparison. 
This approach avoids potential bias and double dipping 
as the mask used to measure inter- participant reproduc-
ibility was constructed on data that did not include the 
participant whose reproducibility was being tested.

2.5.5.3. Consistency analysis. The consistency of a 
given participant’s ISCs was estimated by calculating a 
similarity score between the participant and their corre-
sponding LOO dataset. Specifically, the normalized dot 
product was computed between the Intact ISCs of a 
left- out participant (as computed in section 2.5.2) and 
the group- averaged Intact ISCs computed from the 
remaining participants. This calculation only used chan-
nels from the Intact > Scrambled masks (e.g., BYD > BYD 
Scrambled or Taken  >  Taken Scrambled), which were 
derived from the masking procedure described above. 
These channels were used as they were expected to 
isolate for higher- order cognitive processing specific to 
each narrative. The dot product was normalized for 
each participant to account for the different number of 
significant channels within each mask. Formally, this 
calculation is as follows:

1
n

al,igl,i
i=1

n

∑

Where gl, i  is a vector of averaged ISC values across par-
ticipants from the left- out dataset l  and al, i is a vector of 
ISCs from participant l , and n is the size of the mask. The 
normalized dot product was used over other similarity 
scores because it preserves both the magnitude and the 
direction of the similarity. Both magnitude and direction 
are important as only the participants who show system-
atically lower ISCs compared to the rest of the group are 
of interest as that would call into question the reproduc-
ibility of their ISCs.

To validate this approach, two verification steps were 
implemented. First, the identical procedure to above was 
applied instead using a given participant’s Scrambled 
ISCs rather than their Intact ISCs. That is, the normalized 
dot product was computed between the Scrambled ISCs 
and the group averaged ISCs from the Intact condition 
using the respective Intact > Scrambled mask. Then, a 
two- sample t- test was used to compare the normalized 
dot product computed from Scrambled conditions to 
those computed from the Intact condition, where p < 0.05 
denotes a significant result. Second, the normalized dot 
product was recomputed using ISCs derived from phase- 
scrambled time series. Specifically, a set of 1000 phase- 
scrambled time series was computed for each LOO 
dataset. A null distribution of normalized dot products, 
representing chance level similarity, was then used to 
compare a participant’s actual normalized dot product to 
what is possible by chance. A p value was computed for 
each participant which reflected the number of times the 
actual normalized dot product was less than the normal-
ized dot products computed on the phase- scrambled 
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data. To adjust for multiple comparisons across partici-
pants, FDR correction was applied via the Benjamini- 
Hochberg method, with q  <  0.05 denoting significance 
( Benjamini  &  Hochberg,  1995).

2.5.5.4. Sensitivity analysis. To assess the sensitivity of 
single- participant ISCs, a machine- learning approach 
was used to determine whether ISCs could be used to 
decode between (1) BYD and BYD Scrambled and  
(2) Taken and Taken Scrambled conditions. To obtain a 
representative and robust estimate of performance, 17 
machine- learning classifiers were used (available via sci- 
kit learn version 0.23.1;  Pedregosa  et al.,  2011). The clas-
sifiers were selected to obtain a diverse range of existing 
classification approaches such as the tree- based meth-
ods (extra trees and bagging) as well as their gradient 
boosting extensions (Adaboost and XGBoost), linear 
models (logistic and ridge), support vector machines 
(SVM and nu- SVM), Bayesian (naïve Bernoulli and Gauss-
ian), Gaussian (Gaussian process), semi- supervised 
(label propagation and spreading), discriminant analysis 
(linear and quadratic discriminant), and nearest neighbor 
(K- nearest neighbor, nearest centroid).

Each classifier was trained independently 26 times 
(once for each LOO dataset). Hyperparameter tuning was 
performed using the hyperopt package (version 0.2.7; 
 Bergstra  et al.,  2013), with the objective to maximize the 
median balanced accuracy score obtained from threefold 
cross- validation on the training data. Hyperopt uses the 
Tree- structured Parzen Estimator (TPE) method, which is 
a Bayesian hyperparameter optimization framework. 
Specific details about which training and hyperparameter 
tuning can be found in the Table 5S in the Supplementary 
Materials and code available online. Once optimized, 
each classifier was tested on the original ISCs of the par-
ticipant (as computed in section 2.5.2) who was omitted 
from the current LOO dataset. The training and testing 
datasets were masked by channels in their respective 
LOO mask that were significant in either of the Intact or 
Scrambled conditions.

The classifiers’ predictions were pooled to determine 
whether the test ISCs were predicted to be from the 
Intact or Scrambled conditions. This polling procedure is 
otherwise known as “voting”, where the results of an 
ensemble of classifiers are aggregated to form a final, 
robust prediction ( Breiman,  1996;  Kuncheva  &  Whitaker, 
 2003). A given classifier’s vote was proportional to their 
optimized balanced accuracy score on the training set. 
The overall performance of this final prediction was mea-
sured by the balanced accuracy obtained on the test set.

The performance of the model was statistically evalu-
ated by comparing the actual balanced accuracy to a null 
distribution of balanced accuracy scores derived from 

permutation testing. The identical approach to above 
was conducted, and only the true condition labels were 
shuffled. This was done for 1000 iterations with different 
shuffled labels to generate a null distribution of balanced 
accuracy scores. This same procedure was applied to 
determine significant recall (True Intact / (True Intact  + 
False Scrambled)) and precision (True Intact / (True 
Intact + False Intact)) scores.

Last, to explore which channels were driving the 
decoding performance, the identical machine learning 
approach was applied at the single- channel level. Specif-
ically, for both BYD vs. BYD Scrambled and Taken vs. 
Taken Scrambled, ISCs from a single channel were used 
as a sole feature for the machine- learning approach to be 
trained and tested on. This channel- specific performance 
was assessed as the average balanced accuracy across 
LOO datasets.

2.5.6. Visualizing cortical activation  
on a brain template

For data visualization purposes, statistical maps and 
ISCs were plotted on a template cortical surface. Briefly, 
AtlasViewer was used to spatially register the channels 
used in this study onto a common reference template 
(Colin27;  Aasted  et al.,  2015;  Collins  et al.,  1998). To do 
so, it uses anchor- based registration ( Tsuzuki  et al.,  2007, 
 2012), which uses a set of canonical landmarks from the 
10- 20 system from EEG (e.g., nasion, left, and right pre-
auricular), in addition to another anchor point on the 
scalp to derive the affine that enables the translation from 
channel space to brain space. Once translated, Monte 
Carlo simulation is used to model the expected flight 
path of photons from a channel to the brain ( Boas  et al., 
 2002). These simulations account for the scattering and 
absorption properties of brain tissue, enabling a calcula-
tion of the sensitivity a channel has for recording from a 
given region. The underlying brain regions are then 
inferred from this spatial sensitivity profile (see  Abdalmalak 
 et  al.,  2022 for a plot showing the sensitivity profile 
obtained with the probe used in this study). These regions 
were then labeled using the Automated Anatomical 
Labeling ( Tzourio- Mazoyer  et al.,  2002) which was inde-
pendently validated by the Harvard Oxford cortical atlas 
( Desikan  et al.,  2006;  Frazier  et al.,  2005;  Goldstein  et al., 
 2007;  Makris  et al.,  2006).

3. RESULTS

3.1. Group results

As shown in Figure  2, Intact conditions showed wide-
spread significant ISCs. BYD showed significant ISCs in 
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Table 1. Significant regions in the BYD > BYD Scrambled comparison.

Channel name q t(25) Channel name q t(25)

Right supramarginal gyrus 0 5.342 Left middle frontal gyrus 0.014 4.169
Right supramarginal gyrus 0 7.523 Left postcentral gyrus 0.023 4.049
Right superior temporal gyrus 0 5.747 Right middle temporal gyrus 0.023 4.063
Right middle frontal gyrus 0 5.690 Left supramarginal gyrus 0.023 4.051
Right angular gyrus 0.002 4.646 Left middle frontal gyrus 0.025 4.010
Left middle occipital gyrus 0.004 4.478 Right supramarginal gyrus 0.028 3.965
Right superior temporal gyrus 0.004 4.516 Left superior frontal gyrus 0.039 3.858
Right pars opercularis 0.005 4.449 Left inferior parietal lobule 0.04 3.839
Left middle temporal gyrus 0.005 4.412 Right pars opercularis 0.044 3.798
Right middle cingulate gyrus 0.007 4.307 Left middle temporal gyrus 0.047 3.747
Left superior parietal lobule 0.009 4.253 Left superior frontal gyrus 0.048 3.711

the superior, middle, and inferior frontal gyri, bilateral 
supramarginal and parietal lobule, the parieto- occipital 
junction, and superior and middle temporal lobes bilat-
erally. As expected, significant ISCs in the audio- only 
Taken condition were less diffuse compared to BYD but 
engaged several frontal and parietal regions such as the 
bilateral middle frontal gyrus, bilateral supramarginal 
gyrus, and bilateral inferior frontal gyrus as well as in 
temporal regions such as the bilateral middle temporal 
gyrus and right superior temporal gyrus. In contrast, 
both Scrambled conditions showed focal ISCs within the 
left temporal cortex, proximal regions of the inferior fron-
tal gyrus and parieto- occipital junction. See the Table 1S- 
4S in the Supplementary Materials for a complete list of 
significant regions.

When Intact and Scrambled conditions were com-
pared, a clear pattern of robust ISC emerged in Intact 
conditions compared to Scrambled conditions (see 
Fig. 2). In BYD > BYD Scrambled, peak frontal and pari-
etal ISC was observed in the bilateral supramarginal 
gyri, inferior frontal gyrus, left superior and inferior pari-

etal lobule, the left superior frontal gyrus, and bilateral 
middle frontal gyri. In the Taken > Taken Scrambled 
comparison, peak frontal and parietal ISC was observed 
in the right supramarginal gyrus, left anterior cingulate 
gyrus, bilateral middle frontal gyri, and pars triangu-
laris. For all significant regions for each comparison, 
refer to Tables 1 & 2.

3.2. Associating suspense ratings with group- level 
changes in HbO and HbR activity

Previously published suspense ratings for the two narra-
tive stimuli were used to further link neural synchroniza-
tion across participants to a shared experience of the 
movie narratives ( Laforge  et al.,  2020;  Naci  et al.,  2014). 
As shown in Figure 3, HbO and HbR activity during BYD 
was significantly predicted by suspense ratings in the left 
inferior parietal lobule (HbO: t(234)  =  3.293, q  <  0.05;  
HbR t(234)  =  - 3.564, q  <  0.05), left postcentral (HbO: 
t(234) = 4.899, q < 0.001; HbR t(234) = - 5.075, q < 0.001), 
and bilateral pars triangularis (right: HbO: t(234) = 3.069, 

Fig. 2. Significant group- level ISCs for BYD (top) and Taken (bottom) condition, for Intact, Scrambled, and Intact >  
Scrambled comparisons. The colormap denotes the strength of the t- score ranging from 4 (red) to 9 (yellow). The 
correspondence between the channel and the area of the brain was estimated using Monte Carlo Simulation and 
AtlasViewer ( Aasted  et al.,  2015).
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q  <  0.05; HbR: t(234)  =  - 3.169, q  <  0.05; left: HbO: 
t(234) = 3.412, q < 0.05; HbR: t(234) = - 3.557, q < 0.05). 
For Taken, HbO and HbR channels were significantly pre-
dicted by suspense ratings in the right medial superior 
frontal gyrus (HbO: t(142)  =  3.456, q  <  0.05; HbR 
t(142) = - 3.085, q < 0.05), left superior frontal gyrus (HbO: 
t(142) = 3.121, q < 0.05; HbR t(142) = - 3.920, q < 0.05), 
right superior frontal gyrus (HbO: t(142) = 3.928, q < 0.05; 
HbR t(142) = - 3.181, q < 0.01), and left middle occipital 
gyrus (HbO: t(142) = 3.769, q < 0.05; HbR t(142) = - 4.161, 
q  <  0.01). Notably, some of these significant regions 
overlapped with regions found in the group results, such 
as the left inferior parietal lobule and left postcentral 
gyrus in BYD and the left superior frontal gyrus in Taken, 
providing further evidence that the observed neural dif-
ferences between conditions are due to higher- level pro-
cessing of the movie narratives.

3.3. Assessing the consistency of ISCs

As expected, the normalized dot products in the Intact 
conditions were significantly larger than the Scrambled 
condition. Specifically, BYD had a significantly larger nor-
malized dot product (M = 0.027, SD = 0.019) than BYD 
Scrambled (M  =  0.011, SD  =  0.009, t(25)  =  4.447, 
p < 0.001) and Taken had a significantly larger normalized 
dot product (M = 0.017, SD = 0.014) than Taken Scram-
bled (M = 0.003, SD = 0.010, t(25) = 4.883, p < 0.001). 
Critically, when an individual participant’s normalized dot 

Table 2. Significant regions in the Taken > Taken 
Scrambled comparison.

Channel name t(25) q

Right supramarginal gyrus 5.110 0.003
Left anterior cingulate gyrus 4.807 0.004
Right pars triangularis 4.319 0.010
Right supramarginal gyrus 4.125 0.020
Right middle frontal gyrus 4.085 0.024
Left middle frontal gyrus 3.848 0.047

Fig. 3. T- scores from the group averaged HbO activity (left and right sagittal view) depicting regions that were 
significantly predicted by suspense ratings (q < 0.05) in the BYD (left) and Taken (right) conditions after controlling for their 
Scrambled conditions. HbR (not shown) showed similar findings, but in the opposite direction. The colormap denotes the 
strength of the t- scores, with darker red colors indicating significant positive t- scores.

product was compared to what was obtained by chance, 
it was revealed that 24 out of 26 participants in BYD and 
20 out of 26 in Taken were significantly different from 
chance (see Fig.  4 for each participant’s consistency 
results). Specifically, in the BYD condition, the normalized 
dot products of participants 7 of - 0.015 (punc = 1), 8 of 
0.015 (punc = 0.120) did not differ from chance. Whereas 
in the Taken condition, the normalized dot products of 
participants 6 of 0.002, (punc = 0.198) 7 of - 0.004 (punc = 
0.992), 8 of 0.005 (punc = 0.006), 16 of - 0.015 (punc  = 1), 
19 of - 0.007 (punc = 0.999) and 26 of 0.003 (punc = 0.023) 
could not be distinguished from chance.

3.4. Assessing the sensitivity of ISCs

3.4.1. BYD vs. BYD scrambled classification

The voting machine- learning approach could decode 
between BYD and BYD Scrambled with a balanced accu-
racy of 0.808 (p < 0.001). Specifically, the approach could 
distinguish the BYD condition from BYD Scrambled in 17 
out of 26 participants and BYD Scrambled from BYD in 
25 out of 26 participants (recall = 0.654, p = 0.029; preci-
sion = 0.944, p < 0.001). Additional details can be found 
in Figure 5A and 5B. Exploratory analyses revealed that 
several individual channels could sensitively decode 
between these conditions, including the right superior 
frontal gyrus and the right supramarginal gyrus which 
achieved the highest balanced accuracy scores (0.79 
and 0.83, respectively) (see Fig.  5C for all channels). 
Notably, the performance of most classifiers was similar, 
suggesting that the results did not rely on complex non- 
linear relationships between the classifiers (details about 
the individual performance of classifiers can be found in 
Figure 2S in the Supplementary Materials).

3.4.2. Taken vs. taken scrambled classification

The voting machine- learning approach could decode 
Taken and Taken Scrambled with a balanced accuracy of 
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0.788 (p < 0.001). Specifically, the approach could distin-
guish the Taken condition from Taken Scrambled in 20 
out of 26 participants and Taken Scrambled from Taken in 
21 out of 26 participants (recall = 0.769, p = 0.003; preci-

sion = 0.800, p < 0.001). Additional details can be found 
in Figure  5A and 5B. These results are likely driven by 
several channels, including the right middle frontal gyrus 
and, like BYD, the right supramarginal gyrus, which  

Fig. 4. Normalized dot product values for the BYD (top) and Taken (bottom) condition. Participants are shown on the 
x- axis and normalized dot product on the y- axis. Asterisks indicate participants whose normalized dot product did not 
significantly differ from chance. The left and right lateral views of the brain show a given participant’s ISCs masked by 
channels that have significantly larger ISCs in the BYD > BYD Scrambled (top) or Taken vs. Taken Scrambled (bottom) 
in their respective LOO dataset, where the scale ranges from blue (- 0.4) to red (0.4). Abbreviations: ISC = Inter- subject 
correlation; LOO = Leave- one out.
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individually obtained balanced accuracy scores of 0.750 

and 0.770 (see Fig. 5C for more details). As with the BYD 

vs. BYD Scrambled classification, most of the individual 

classifiers performed similarly well (see Fig.  3S in the 

Supplementary Materials).

4. DISCUSSION

This study aimed to determine whether the neural cor-
relates of movie narratives were replicable and reproduc-
ible using fNIRS. First, the group analyses revealed that 
frontal and parietal regions showed higher ISC in Intact 

Fig. 5. (A) Confusion matrices show the correct and incorrect predictions of the machine- learning approach. Participants 
are sorted by the predicted condition (x- axis) and actual condition (y- axis). (B) Histograms of performance metrics for BYD 
vs. BYD Scrambled (top) and Taken vs. Taken Scrambled (bottom). The histograms show the null distribution of balanced 
accuracy (left), precision (middle), and recall (right) that could be obtained by conducting the machine- learning approach 
on shuffled condition labels. The dashed red line reflects the actual performance metric obtained. (C) Channel decoding 
performance was determined by rerunning the machine- learning approach on individual channels. The brain maps show 
group balanced accuracy plotted on the whole brain (left and right lateral view), where the left indicates channels useful in 
distinguishing BYD vs. BYD Scrambled and the right channels useful in distinguishing Taken vs. Taken Scrambled. Darker 
red colors indicate higher balanced accuracy scores, whereas dark blue values indicate poor balanced accuracy.



12

M. Kolisnyk, S. Novi, A. Abdalmalak et al. Imaging Neuroscience, Volume 2, 2024

conditions compared to Scrambled conditions, replicat-
ing previous fMRI and EEG findings ( Laforge  et al.,  2020; 
 Naci  et  al.,  2014,  2017). Moreover, independently 
acquired ratings of suspense could be used to predict 
neural activity in a subset of these regions, thus further 
establishing the link between activity in these regions and 
the processing of higher- order components of the narra-
tives. Critically, the findings of this study suggest that 
fNIRS is reproducible at the single- participant level. 
Participant- specific ISCs in regions that differed between 
Intact and Scrambled conditions were shown to be simi-
lar to the group. Namely, 24 out of 26 participants in BYD 
and 20 out of 26 in Taken had a normalized dot product 
greater than what was expected by chance. Finally, ISCs 
could be used to decode between Intact and Scrambled 
conditions with balanced accuracy ranging from 79– 
81%. These results support that fNIRS can robustly and 
reliably detect the neural correlates of movie narratives.

The significant ISCs in frontal and parietal regions 
during movie watching and listening overlap with areas 
previously identified in fMRI and EEG studies ( Gao  et al., 
 2020;  Golland  et al.,  2007;  Hasson  et al.,  2004;  Laforge 
 et al.,  2020;  Naci  et al.,  2014). This included the dorsolat-
eral prefrontal cortex, inferior frontal and temporoparietal 
junction, which are key nodes of the frontoparietal and 
ventral attention networks ( Corbetta  &  Shulman,  2002; 
 Smith  et al.,  2009;  Vossel  et al.,  2014). These results are 
in line with previous fNIRS studies, which have implicated 
the dorsal and prefrontal cortex in processing narrative 
stimuli ( Mizrahi  &  Axelrod,  2023;  Rowland  et  al.,  2018; 
 Somech  et  al.,  2022). Importantly, these regions were 
absent in Scrambled conditions, which showed ISC pri-
marily in temporal cortices, known for its processing of 
simple auditory information, and previously observed in 
fNIRS research (e.g.,  Fishell  et  al.,  2019;  Luke  et  al., 
 2021). While there is broad overlap between our results 
and previous fMRI studies, the results of this study tend 
to be more distributed across the cortex, which likely 
reflects the reduced spatial resolution of fNIRS compared 
to fMRI.

These results support the broad use of movie narra-
tives and fNIRS in clinical environments and naturalistic 
research settings. Notably, fNIRS has the advantage of 
being administered directly at a patient’s bedside, 
enabling measurement of both neonatal ( Mitra  et  al., 
 2020;  Tang  et al.,  2024) and adult populations ( Bicciato 
 et  al.,  2022) within the intensive care unit. In addition, 
fNIRS has been used to measure neural activity in 
patients with neurodegenerative diseases in scenarios 
where fMRI is impractical or potentially detrimental, 
including amyotrophic lateral sclerosis ( Kuruvilla  et  al., 
 2013), Alzheimer’s disease ( Blum  et al.,  2022;  Keles  et al., 
 2022), and in chronic disorders of consciousness patients 

( Abdalmalak  et al.,  2020). Future studies should consider 
having these patients watch or listen to movie narratives, 
as it enables the further exploration of higher- order cog-
nitive processes with minimal time and effort. Moreover, 
movie narratives have been established as useful substi-
tutes for resting- state procedures in developmental pop-
ulations ( Raschle  et  al.,  2009;  Vanderwal  et  al.,  2015), 
which are an ideal population for fNIRS due to its robust-
ness to motion ( Pinti  et  al.,  2020;  Scholkmann  et  al., 
 2014). For these reasons, future studies should consider 
using movie narratives in place of resting- state proce-
dures where appropriate.

The machine- learning approach used in this study 
aggregated 17 classifiers to predict which movie stimuli a 
participant was experiencing. It has been previously 
shown that prediction accuracy can vary dramatically 
based on which machine- learning classifier is used (e.g., 
 Naseer  et al.,  2016), as well as influenced by factors such 
as small sample size and number of training examples, 
which is a huge consideration in this study ( Arbabshirani 
 et al.,  2017;  Maier- Hein  et al.,  2018;  Poldrack  et al.,  2020). 
Our methodology capitalizes on the multitude of avail-
able machine- learning approaches to produce a general-
izable and robust estimate of the relationship between 
ISC and movie stimuli. While classifier performance is 
largely statistically similar, Bayesian, support vector clas-
sification, semi- supervised and quadratic discriminant 
classifiers performed best, whereas decision trees per-
formed numerically worse (see Fig. 2S & 3S in the Sup-
plementary Materials). While choosing a single classifier 
could yield slightly better performance on this sample, 
the combination of all classifiers appears to provide an 
honest estimate of generalization error rather than cherry- 
picking a specific one. Indeed, with problems such as 
data leakage and the inherent empirical approach of 
machine learning, it is becoming even more important to 
produce honest estimates of classification performance 
( Lemm  et  al.,  2011;  Maier- Hein  et  al.,  2018;  Poldrack 
 et al.,  2020).

Overall, these results demonstrate that ISCs observed 
during movie watching and listening are consistent and 
sensitive at the individual level. Several explanations 
exist for the consistency observed in this study. From a 
technical perspective, using short channels to remove 
extra- cortical contaminations from the fNIRS signals and 
correcting motion artifacts reduce two of the main fNIRS 
confounding factors that can decrease reproducibility 
( Abdalmalak  et al.,  2022;  Dravida  et al.,  2017;  Kakimoto 
 et al.,  2009;  Kirilina  et al.,  2012;  Novi,  Forero,  et al.,  2020, 
 Novi,  Roberts,  et al.,  2020;  Wiggins  et al.,  2016;  Zhang 
 et al.,  2011). Combining appropriate preprocessing with 
wide probe coverage and rich data analytic algorithms is 
likely key to achieving the observed high reproducibility. 
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Indeed, these implementations and analyses help expand 
upon another study showing reliable single- participant 
reproducibility can be achieved with movie narratives and 
fNIRS ( Mizrahi  &  Axelrod,  2023).

Despite these technical improvements, the neural 
results of some participants deviated from the group. It is 
unknown whether this is a consequence of the quality of 
the recording itself, a limitation due to the spatial sensitiv-
ity of fNIRS, or reflects differences in the way participants 
engaged with the clips. While the latter two cases cannot 
be ruled out, an exploratory analysis of several different 
quality indexes (e.g., SNR, coefficient of variation, scalp 
coupling index) was conducted, which found that only 
the coefficient of variation was significantly negatively 
related to consistency scores (see Investigating the Rela-
tionship Between Signal Quality and Inter- Participant 
Variability section in the Supplementary Materials). Future 
studies should map individual- specific cognitive 
responses and behaviors during the viewing of narrative 
stimuli to better understand the source of this variability.

4.1. Limitations

While the present study establishes the use of fNIRS to 
assess the neural correlates of narrative stimuli at the 
individual level, several limitations exist. One limitation is 
the lack of an independently acquired dataset, which 
poses challenges to accurately estimate inter- participant 
reproducibility. However, several steps were included 
(e.g., permutation testing) to reduce effects due to idio-
syncrasies within the dataset. Second, one issue with 
BYD and Taken was that participants’ comprehension 
and other behavioral measures (e.g., engagement) of the 
movie clips were not assessed. Therefore, it is possible 
that some participants did not pay enough attention to 
the movies to recruit higher- order cognitive processes, 
which could potentially lead to false negatives. Third, 
fNIRS, unlike fMRI, only measures surface regions of the 
cortex. This limitation precludes measurement of poste-
rior midline regions, such as the precuneus, which has 
been shown to be involved in the processing of movie 
narratives and naturalistic stimuli more broadly 
( Bottenhorn  et al.,  2018;  Nastase  et al.,  2021). For this 
reason, future fNIRS research may lack the ability to 
investigate certain aspects of naturalistic stimuli which 
arise from these regions. Fourth, due to possibility of 
knowledge of the plot carrying over from Intact condi-
tions to Scrambled conditions, Scrambled conditions 
always preceded their Intact counterpart. This makes it 
possible that our results are partially due to an order 
effect. While an order effect cannot be fully ruled out, 
explaining our results in terms of an order effect falls 
short in addressing how stimulus presentation order 

selectively produces significant ISCs in frontal and pari-
etal regions in the Intact conditions, which have also 
been found in previous studies (e.g.,  Gao  et  al.,  2020; 
 Hasson  et al.,  2004, 2010). In addition, changes to the 
data that may drive an order effect (e.g., signal quality) 
would be partially controlled for by permutation testing. 
Finally, no channels were removed from the dataset. This 
was done to ensure that the estimates of inter- participant 
reproducibility were not biased by including only high- 
quality channels. Of note is that the quality of the chan-
nels should vary across participants but not across 
stimuli since the fNIRS cap was not removed, and all 
stimuli were perceptually comparable. Future studies 
should directly look at the impact of the inclusion of good 
and poor channel quality, particularly in regions that dis-
tinguish Intact and Scrambled conditions.

4.2. Conclusion

As shown in this study, the neural correlates of movie 
narratives, as acquired with fNIRS, are sufficiently reli-
able to detect higher- order cognitive processing in 
healthy participants. These findings support translating 
this paradigm to populations in which assessing higher- 
order cognitive capacities is difficult. Nevertheless, per-
fect inter- participant reproducibility was not achieved. 
Continued advancements in signal processing, multi- 
modal imaging, feature extraction, and task develop-
ment can continue to clarify the underlying precision of 
fNIRS recordings as well as elucidate the underlying 
higher- order cognitive process under study ( Kazazian 
 et  al.,  2021;  Naseer  &  Hong,  2015;  Pinti  et  al.,  2020; 
 Yücel  et al.,  2021).

DATA AND CODE AVAILABILITY

The code detailed in the method can be found here: 
https://github . com / TheOwenLab / fNIRS - Narrative - Stimuli. 
The data supporting the findings of this research are avail-
able on request to the corresponding author, pending a 
formal data- sharing agreement and approval from the 
local ethics committee.
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